A molecular clock for Arctic marine invertebrates

Tzitiki Lozea-Quintana, Yash A. Bhatt, Christina Carr, Tooba Khan, Samantha Lyon, Sarah J. Adamowicz
tzitiki.loea@gmail.com

Abstract

In the Arctic region, the opening/closure events of the Bering Strait provide a calibration point to estimate molecular divergence rates in northern marine taxa. Here, we used the novel "iterative calibration" approach to incorporate the complete glacial history of the Bering Strait for clock dating. Using publicly available sequences of the cytochrome c oxidase subunit I (COI) gene, we explored patterns of molecular divergence across 91 trans-Bering sister clades in echinoderms, mollusks, polychaetes, and arthropods. This is the first large-scale study for clock calibration in northern marine invertebrates. The results from this study will advance our ability to date evolutionary events in the marine realm and will expand our understanding of the impacts of prior climatic changes upon the history of life.

Introduction

Divergence times for Arctic marine lineages have commonly been estimated based on calibrations from geographically distant taxa. However, due to evidence of rate heterogeneity among taxa and environments, it is essential to pursue clock calibrations for Northern lineages. The opening and re-closure events of the Bering Strait provide an exceptional resource for calibrating the molecular clock in Northern marine taxa. This source of calibration has been barely explored in the past. The Bering Strait first opened 5.4-5.5 Ma (Maes, 2002). However, the major marine migration from the Pacific to the Arctic Ocean took place 3.5 Ma (Tzitziki Lozea-Quintana et al., 2016). The migratory events were followed by a maximum glacial (2.4-3 Ma) episode, with a decline in the sea level and the consequent closure of the Bering Strait. Since then, successive episodes of formation and retreat of glaciers occurred, shaping the distribution of Northern marine fauna. In this study, we explored divergence patterns of 91 trans-Bering sister pairs of lineages inhabiting the Pacific vs. Arctic-Antarctic Oceans using the iterative calibration approach and the Bering Strait glacial history to calibrate the molecular clock.

Methods

1. Preliminary identification of potential trans-Bering sister clades using neighbor-joining trees in BOLD.
2. Publicly available COI-SP sequences downloaded from BOLD and aligned in MEGA7.
5. Saturation test.
7. Iterative calibration approach (1) to find the best calibration date according to the glacial history of the Bering Strait.
 • Assigning a starting calibration date to a selected reference node and then estimating divergence times for the other sister clades.
 • Comparing the major gene migration from the Pacific to the Arctic with the geological time scale.
 • If necessary, re-assign ages to sister clades and compare with the geological history.
 • Following the process until finding concordance between genetic divergences and the geological history of the Bering Strait.

Results and Discussion

Divergences between trans-Bering sisters ranged from 0.12% to 26.37% K2P. Assuming simultaneous isolation of all sister pairs during the recent trans-Arctic interchange (3.5 Ma), as commonly assumed in the literature, would imply high variability in evolutionary rates. However, rate heterogeneity was not the major explanation since the molecular clock hypothesis was rejected for only five pairs, and whole-tree analyses for select taxa indicated only modest clock deviations. Thus, the results strongly support previous research suggesting multiple pulses of trans-Bering migrations. Our results suggest a rate of K2P divergence of 2.8%/MY in echinoderms, 3.2%/MY in mollusks, 5-5.2%/MY in arthropods, and 3.5-7.4%/MY in polychaetes. These rates contrast with a highly-cited low divergence rate reported for tropical aliphid shrimps (1.4%/MY). The prevalent use of the aliphid rate could have led to a systematic underestimation of rates for dating marine phylogenies.

Table 1 Summary of molecular clock calibrations for the mitochondrial cytochrome c oxidase subunit I (COI) in the four groups of Northern marine invertebrates used in this study.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Total number of sister pairs</th>
<th>Range of divergences among sister pairs (% K2P)</th>
<th>Divergence rate estimate (% K2P per MY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echinodermata</td>
<td>16</td>
<td>0.45–15.45</td>
<td>2.8%</td>
</tr>
<tr>
<td>Mollusca</td>
<td>26</td>
<td>1.57–21.87</td>
<td>3.2%</td>
</tr>
<tr>
<td>Arthropoda</td>
<td>29</td>
<td>0.91–26.37</td>
<td>5.0–5.2%</td>
</tr>
<tr>
<td>Polychaeta</td>
<td>20</td>
<td>0.12–15.97</td>
<td>3.5–4.7%</td>
</tr>
</tbody>
</table>

Figure 1. Divergence time estimates for Northern marine echinoderms, molluscs, arthropods, and polychaetes using K2P divergences and the best calibration according to the iterative calibration approach. The shaded boxes show the two periods of time when trans-Bering migrations were extremely unlikely, during the maximum glacial (2.4–3 Ma) and before the earliest well-supported opening of the Bering Strait at 5.5 Ma.

Conclusions

This study provides strong evidence of multiple pulses of trans-Bering migrations in all four groups of marine invertebrates. The iterative calibration was successful for calibrating the molecular clock for Northern marine taxa using the Bering Strait despite the complex glacial history. By integrating genetic, biogeographic, and fossil evidence, and by using a substantial number of sister clades, we anticipate more accurate calibrations than when using simplistic assumptions. The new rates of molecular evolution presented here will advance our ability to date recent evolutionary events in the marine realm. However, more studies are still needed to further understand evolutionary rates in marine taxa and to expand our understanding of the impacts of prior climatic changes upon the history of life.

References

Acknowledgements

This research was funded by a graduate scholarship from CONACYT to TLQ and by an NSERC Discovery Grant to SA. We acknowledge the Ontario Ministry of Research Innovation for providing funding to Paul Hebert for the development of BOLD, which was the main source of data for this project. Finally, we also want to acknowledge all the researchers who have made public their COI barcode sequences from echinoderms, molluscs, arthropods, and polychaetes.