CONCLUSION

In conclusion, our results show that 27% of the products tested were mislabeled and contained no *P. sidoides*. We therefore propose that DNA barcoding in conjunction with chemical analyses should be used concurrently as a method of CHP authentication for quality control purposes. By combining the two methods, authentication of raw materials can be executed with greater certainty and CHP authentication for quality control purposes. By combining the two methods, consumers alike. Furthermore, a DNA barcode reference library for the section Reniformia was added to the Barcode of Life Database and several herbal medicines tested, showed not to contain DNA material of Pelargonium species, indicating potential adulteration of the said products. Significance: This is the first attempt to compile a reference library of DNA barcodes for herbal medicines in South Africa which will provide species level identification for herbal medicines traded in the country. The reference sequences generated in the project were used to effectively compare against sequence data of commercial herbal products and adulterated herbal products were identified.

REFERENCES & ACKNOWLEDGEMENTS

Little, D.P. 2011. DNA barcode sequence identification incorporating taxonomic hierarchy and within taxon variability. PluS ONE, 6(12).

PHOTO CREDITS:

Pelargonium sidoides: © Polly Photographic - goo.gl/Ap9J6Q

Pelargonium reinfome: © Alan Gregg - goo.gl/9dihD

African Centre for DNA Barcoding (ACDB), Department of Botany & Plant Biotechnology, University of Johannesburg, P. O. Box 524, Auckland Park, South Africa – 2006

Department of Pharmaceutical Sciences, Tshwane University of Technology, 275 Nelson Mandela Drive, Arcadia, Pretoria, South Africa - 0001